Simple Binary Tree:
In this blog we will see, how to create a simple binary tree. We will be using Queue data structure to store the last node inserted in the tree. This will prevent unnecessary traversal of tree for each new node insertion.
Time Complexity: O(n)
Space Complexity: O(n)
In this blog we will see, how to create a simple binary tree. We will be using Queue data structure to store the last node inserted in the tree. This will prevent unnecessary traversal of tree for each new node insertion.
Time Complexity: O(n)
Space Complexity: O(n)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* | |
A Simple Binary Tree | |
**/ | |
#include<iostream> | |
#include<stdlib.h> | |
using namespace std; | |
/* | |
defining the structure | |
**/ | |
typedef struct Tree { | |
int data; | |
struct Tree *left, *right; | |
}BTree; | |
typedef struct Queue { | |
int front, rear; | |
int cap,size; | |
BTree **arr; | |
}Queue; | |
/* | |
* Utility methods for Queue | |
*/ | |
Queue *initializeQueue (int size) { | |
Queue *q = (Queue*) malloc (sizeof (Queue)); | |
q->front = q->rear = -1; | |
q->cap = size; | |
q->size = 0; | |
q->arr = (BTree**) malloc (sizeof (BTree*) * size); | |
if (!q->arr) | |
return NULL; | |
return q; | |
} | |
int isEmpty (Queue *q) { | |
return q->front == -1; | |
} | |
int isFull (Queue *q) { | |
return ((q->rear + 1) % q->cap == q->front); | |
} | |
void resizeQueue (Queue *q) { | |
int size = q->cap * 2; | |
q->cap = size; | |
q->arr = (BTree**) realloc (q->arr, q->cap); | |
if (!q->arr) | |
return; | |
if (q->front > q->rear) { | |
for (int i = 0; i < q->front; i ++) { | |
q->arr[i + size] = q->arr[i]; | |
} | |
q->rear = q->rear + size; | |
} | |
} | |
void enQueue (Queue *q, BTree *data) { | |
if (isFull (q)) { | |
cout<<"\nQueue is full. Increasing Queue size"; | |
resizeQueue (q); | |
} | |
q->rear = (q->rear + 1) % q->cap; | |
q->arr[q->rear] = data; | |
if (q->front == -1) | |
q->front = q->rear; | |
q->size ++; | |
} | |
BTree* deQueue (Queue *q) { | |
if (isEmpty (q)) | |
return NULL; | |
BTree* data = q->arr[q->front]; | |
if (q->front == q->rear) | |
q->front = q->rear = -1; | |
else | |
q->front = (q->front + 1) % q->cap; | |
q->size --; | |
return data; | |
} | |
void deleteQueue (Queue *q) { | |
if (q) { | |
if (q->arr) | |
free (q->arr); | |
free (q); | |
} | |
} | |
BTree* initializeNode () { | |
BTree *root = (BTree*) malloc (sizeof (BTree)); | |
if (!root) return NULL; | |
root->left = root->right = NULL; | |
return root; | |
} | |
/* | |
* Method Name: preOrder | |
* Description: Prints preorder traversal of tree | |
*/ | |
void preOrder (BTree *root) { | |
if (root) { | |
cout <<root->data<<" "; | |
preOrder (root->left); | |
preOrder (root->right); | |
} | |
} | |
/* | |
* Method Name: inOrder | |
* Description: Prints inorder traversal of tree | |
*/ | |
void inOrder (BTree *root) { | |
if (root) { | |
inOrder (root->left); | |
cout <<root->data<<" "; | |
inOrder (root->right); | |
} | |
} | |
/* | |
* Method Name: postOrder | |
* Description: Prints post order traversal of tree | |
*/ | |
void postOrder (BTree *root) { | |
if (root) { | |
postOrder (root->left); | |
postOrder (root->right); | |
cout <<root->data<<" "; | |
} | |
} | |
/* | |
* Method Name: insertNode | |
* Description: Inserts data in a binary tree | |
*/ | |
void insertNode (BTree **root) { | |
Queue *q = initializeQueue (20); | |
// 1. Elements we want to insert | |
for (int i = 1; i < 10; i ++) { | |
// 2. create an empty node | |
BTree *node = initializeNode (); | |
node->data = i; | |
// 3. If tree is empty then make it as root | |
if (*root == NULL) | |
*root = node; | |
else { | |
// 4. get last inserted node and assign to left/right whichever is null | |
BTree *front = q->arr[q->front]; | |
if (front->left == NULL) { | |
front->left = node; | |
} else if (front->right == NULL){ | |
front->right = node; | |
} | |
// 5. delete the front if its both child are not empty | |
if (front->left && front->right){ | |
deQueue (q); | |
} | |
} | |
// 6. Insert the newly created node | |
enQueue (q, node); | |
} | |
// 7. Delete the queue | |
deleteQueue (q); | |
} | |
int main (void) { | |
BTree *root = NULL; | |
insertNode (&root); | |
cout<<"\nPreorder Traversal:"; | |
preOrder (root); | |
cout<<"\nInorder Traversal:"; | |
inOrder (root); | |
cout<<"\nPostOrder Traversal:"; | |
postOrder (root); | |
cout<<endl; | |
return 0; | |
} | |
/* | |
Output: | |
Preorder Traversal:1 2 4 8 9 5 3 6 7 | |
Inorder Traversal:8 4 9 2 5 1 6 3 7 | |
PostOrder Traversal:8 9 4 5 2 6 7 3 1 | |
*/ |